The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation

نویسندگان

  • Gerard H Markx
  • Ronald Pethig
  • Juliette Rousselet
چکیده

Interdigitated microelectrodes have been used to investigate the passive dielectrophoretic levitation of latex beads as a function of the frequency and voltage of the applied electrical signal, the suspending medium conductivity, bead size and characteristic dimensions of the electrodes. The variations of the electric field strength E and of the factor ∇E 2 as functions of the height above the electrode plane were determined by computer-aided modelling. As predicted from a simple theory based on the balancing of the gravitational settling force with the negative dielectrophoretic force, the height of levitation was found to be independent of the bead size and at 1 MHz, at which the levitation was at its largest, to be only weakly dependent on the conductivity of the suspending medium. The frequency dependence of the levitation height was found to be in close agreement with theory, based on the known dielectric properties of the beads and on previously determined electrode polarization effects. Apart from using this method to investigate the dielectric properties of particles, a particularly important application is envisaged to be that of particle separation, based on differences in dielectric properties, using dielectrophoretic levitation in combination with field-flow fractionation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical and Analytical Studies of AC Electric Field in Dielectrophoretic Electrode Arrays

Manipulation of micro-sized particles and biological cells using dielectrophoresis (DEP) is an emerging technique in MEMS and nano technology[3]. This paper presents an exact solution of dielectrophoretic motion of a polarized particle in the vicinity of interdigitated bar electrodes fabricated on planar insulating surfaces which have been widely employed in conjunction with hydrodynamic forces...

متن کامل

Manipulation and trapping of sub-micron bioparticles using dielectrophoresis.

A non-uniform alternating electric field induces motion in polarisable particles called dielectrophoresis. The effect is governed by the relative magnitudes of the dielectric properties of the medium and the particles. The technology has been used to manipulate particles for biotechnological applications, including purification, fractionation and concentration of cells and microorganisms. Howev...

متن کامل

Particle size analysis of dilute environmental colloids by flow field-flow fractionation using an opposed flow sample concentration technique.

An on-line concentration method has been developed for the analysis of dilute suspensions of macromolecules and particles by flow field-flow fractionation (FFF). This method, termed opposed flow sample concentration (OFSC), uses two opposing flowstreams to focus sample into a narrow band near the inlet of the flow FFF channel. Large sample volumes (up to 1 L) have been successfully loaded, conc...

متن کامل

On-chip high-speed sorting of micron-sized particles for high-throughput analysis.

A new design of particle sorting chip is presented. The device employs a dielectrophoretic gate that deflects particles into one of two microfluidic channels at high speed. The device operates by focussing particles into the central streamline of the main flow channel using dielectrophoretic focussing. At the sorting junction (T- or Y-junction) two sets of electrodes produce a small dielectroph...

متن کامل

Accurate Size and Size-Distribution Determination of Polystyrene Latex Nanoparticles in Aqueous Medium Using Dynamic Light Scattering and Asymmetrical Flow Field Flow Fractionation with Multi-Angle Light Scattering

Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997